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A Method for Selecting Between Fisher's Linear Classification Functions
and Least Absolute Deviation in Predictive Discriminant Analysis

ABSTRACT. A method for comparing the cross-validated classification
accuracy of Fisher's linear classification functions and least absolute
deviation is presented under varying data conditions for the two-group
classification problem. With this method, separate-group as well as
total-sample proportions of correct classifications can be compared for
the two classification procedures. McNemar's (1947) test for contrasting
correlated proportions is used in statistical comparisons of separate-group
and total-sample proportions. The method is illustrated with 22 real data
sets.

Standard techniques for solving the two-group classification problem, such as
ordinary least squares (OLS) and Fisher's linear classification functions (FLCFs)', are
based on assumptions of multivariate normality and equality of group covariance
matrices. Mathematical programming (MP) solution techniques are not.
Consequently, we might expect an MP approach to yield greater cross-validated
classification accuracy than a standard approach for nonnormal data or data with
unequal group covariance matrices.

Joachimsthaler and Stam (1990) reviewed the literature on studies comparing the
accuracy of MP and standard approaches, and concluded that some MP approaches
outperform some standard approaches some of the time, but no MP approach
outperforms all standard approaches all of the time. Thus, studies comparing the cross-
validated classification accuracy of MP and standard approaches (e.g., Bajgier & Hill,
1982; Freed & Glover, 1986; Joachimsthaler & Stam, 1990; Stam & Joachimsthaler,
1989, 1990) provide only partial support for the expectation that MP approaches will
be more accurate than standard approaches when assumptions are violated.

One MP technique that shows promise as an alternative to standard classification
approaches is least absolute deviation (LAD). This procedure was discussed by
Armstrong, Frome, and Sklar (1980) in the multiple regression context as an alternative
to OLS, especially for applications involving nonnormal distributions. Morris and
Huberty (1983) surmised that LAD might also be appropriate for classification because
the absolute rather than squared deviation between predicted and actual dichotomous
scores determines the group to which a case is classified.

This conjecture has received empirical support from two simulation studies.
Morris and Huberty (1983) compared the cross-validated classification accuracy of
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LAD and OLS across a wide variety of data conditions, and found a small but
consistent advantage of LAD over OLS. Lee and Ord (1990) compared LAD to
several MP solution techniques and to OLS, and concluded that LAD performs at least
as well as these other procedures. Furthermore, Lee and Ord note that LAD is easy to
implement and inexpensive to run.

At this point, then, we know that LAD has performed as well as, or better than,
OLS using simulated data. However, we do not know whether this result replicates
when LAD is compared with FLCFs using real data sets. To address this issue, a
method for comparing the cross-validated classification accuracy of LAD and FLCFs
for a specific data set is introduced and demonstrated. This method will enable
researchers to select the optimal classification procedure for a specific data set,
regardless of data conditions.

Method

Da . Source: Initially, 33 classification data sets varying in number of cases, number of
predictor variables, degree of group separation, and equality of group covariance
matrices were selected to illustrate the method. However, for 11 of these data sets, the
algorithm used to obtain weights for LAD failed to converge. Consequently, only 22
data sets were employed to illustrate the method. To bolster validity, all of the data
sets were taken from real classification studies (Hekelman, Zyzanski, & Flocke, 1995;
Morris & Huberty, 1987).

Procedure: FLCFs were built based on assumptions of multivariate normality, equal
covariance matrices, and equal prior probabilities of group membership. Cases were
classified into groups using Tatsuoka's (1988, p. 351) minimum chi-squared rule. We
assumed equal priors because population sizes were unknown. The use of sample sizes
as estimates of relative population sizes is not recommended when population sizes are
unknown (Huberty, 1994, p. 65; Meshbane & Morris, 1995b).

LAD models were built using a computer subroutine that incorporates linear
programming code (Armstrong, Frome, & Kung, 1979). The weights generated by
this algorithm minimize the sum of absolute deviations between predicted and actual
criterion scores.

In comparing the predictive accuracy of LAD and FLCFs, external rather than
internal results were considered. Results of an internal classification analysis are those
obtained when measures for the individuals on whom the statistics were based are
resubstituted to obtain the predicted classification scores. In an external classification
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analysis, statistics based on one set of individuals are used in classifying new
individuals. An external analysis is appropriate for making inferences about the
discriminatory power of the predictors for a new set of data (Huberty, 1994, p. 110).

External, or cross-validated, hit-rate accuracy was estimated using the leave-
one-out procedure. A case was classified by applying the function derived from all
cases except the one being classified. This process was repeated round-robin for each
case with a count of the overall classification accuracy used to estimate the cross-
validated accuracy. This procedure, and the analogous PRESS (P$edicted Error Sum
of Squares) procedure (Allen, 1971) for multiple regression, has a relatively wide
following in both the discriminant analysis and multiple regression literature (see, for
example, Allen, 1971; Allen & Cady, 1982; Huberty, 1994; Huberty & Mourad, 1980;
Lachenbruch, 1967; Mosteller & Tukey, 1968).

McNemar's (1947) statistic for correlated proportions was used in the statistical
comparisons of LAD and FLCF hit rates for separate-group and total-sample
proportions. This method was previously suggested for comparing full and reduced
classification models (Morris & Huberty, 1995) and linear and quadratic classification
models (Meshbane & Morris, 1995a), and for selecting predictor variable subsets
(Morris & Meshbane, 1995), but is equally applicable in comparing LAD and FLCFs.
(See Looney, 1988, for a method of comparing classification results of more than two
models.) Because the calculation of the McNemar correlated proportion statistic
requires the joint distribution of hits and misses for both LAD and FLCFs, no statistical
package will accomplish the method. Therefore, we wrote a FORTRAN computer
program to provide this information, as well as to perform the other functions
described in this section (i.e., determine LAD and FLCF weights, classify cases into
groups, conduct the McNemar test and the Box test).

We used the Box test for testing the assumption of homogeneity of covariance
structures. This test is sensitive to multivariate normality, and the outcome is therefore
confounded with the homogeneity of dispersion issue. Nevertheless, the Box test is
routinely used for testing the homogeneity of dispersion assumption and is even the
default in some statistical packages. Notwithstanding concerns over this test, one could
argue that, theoretically, the LAD procedure is more likely to be appropriate when the
Box test indicates that the covariance structures are unequal.

Results

For each of the data sets, Table 1 gives a short description, the degree of group
separation (D) calculated using the centroid to centroid formula described by Huberty
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(1994, p. 43), an index of disproportionality of the group sizes (I) calculated as (ni *
100) / A, where n, is the larger of the two groups, the number of cases in group 1 (nl),
the number of cases in group 2 (n2), the number of predictor variables (p), results of
the Box test for homogeneity of covariance structures, and a comparison of the leave-
one-out (L-0-0) performance of LAD and FLCFs for the total sample and separately
for each group. We compared the performance of the two classification procedures,
displayed as the hit-rate percent obtained by the p predictor variables, via McNemar's
test for contrasting correlated proportions.

Insert Table 1 about here

To illustrate the method for these data sets, we used the .01 alpha level with the
associated critical z of 2.58. As can be seen in Table 1, differences between LAD and
FLCFs in classifying the total sample were statistically significant in only two of the
data sets (15 and 22). In both cases, FLCFs yielded significantly higher hit rates.
Differences between the two classification procedures in separate-group hit rates were
statistically significant in seven of the 22 data sets (8, 9, 10, 11, 15, 21, 22). In five of
these data sets (10, 11, 15, 21, 22), FLCFs worked better. In the other two data sets
(8, 9), LAD worked better.

To assess practical significance, we calculated an index of improvement in hit
rate over chance (described by Huberty, 1994, p. 107) for both LAD and FLCFs. We
defined chance using the proportional chance criterion (see Huberty, 1994, p. 103).
Our effect size measure was the difference between LAD and FLCFs in improvement
over chance. Using a critical effect size of 10%, all statistically significant results were
also of practical significance (effect sizes ranged from 15.84% in data set 11 to 47.25%
in data set 8).

Discussion

While these results are partially consistent with those of Lee and Ord (1990),
who reported similar misclassification rates for LAD and OLS procedures, the results
are clearly inconsistent with Morris and Huberty (1983), who reported a small but
consistent advantage of LAD over OLS across all data sets. The discrepancy between
these findings and those of the current study may be related to relative group size.
Specifically, in both the Lee and Ord and the Morris and Huberty studies, the sizes of
the two groups were identical (Lee and Ord) or nearly so (Morris and Huberty). In the
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current study, the sizes of the two groups were different (index of disproportionality
118 or higher) in eight of the 22 data sets.

For relative group size to be a plausible explanation for the inconsistent results,
we would expect data sets with statistically significant differences in performance for
LAD and FLCFs to have non-trivial differences in group sizes, and data sets yielding
similar performance for the two procedures to have similar group sizes. As evident
from Table 1, group sizes were different (index of disproportionality was 118 or
higher) in five of the seven data sets with statistically significant differences in separate
group hit rates between LAD and FLCFs. Furthermore, relative group sizes were
similar (index of disproportionality was 113 or lower) in 12 of the 15 data sets in which
the performance of LAD and FLCFs were similar. In the other three data sets, the
Mahalanobis distance between groups was relatively high (D = 2.89 to 3.11), which
may have negated the conjectured effect of discrepant group sizes in these data sets.

Regardless of the reason(s) for the discrepant results, the relationship between
data conditions and model performance is far from perfect. Thus, for a given data set,
it is not yet possible to predict the relative performance of LAD and FLCFs on the
basis of data conditions alone. Use of the method and computer program2 demonstrated
herein will allow researchers to compare the explicit cross-validated classification hit-
rate accuracy of LAD and FLCFs for any specific data set and select the procedure that
yields the higher total-sample or separate-group hit rate, depending on which hit rate is
of interest.

Notes

1. A linear classification function is different from a linear discriminant function.

2. For a copy of the FORTRAN program that accomplishes the method, send a
returnable diskette and diskette mailer to Alice Meshbane, College of Education,
Florida Atlantic University, P.O. Box 3091, Boca Raton, FL 33431-0991. Internet:
Meshbane@acc.fau.alu.
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